CALCULATION OF THE INTEGRATED HEAT-TRANSFER
COEFFICIENTS FOR FREE CONVECTION IN
CLOSED AXIALLY SYMMETRIC VESSELS

Yu. A, Kirichenko, A, A, Motornaya,
and P, S. Chernyakov

An approximate method of calculating the integrated heat-transfer coefficients for free convection
based on certain assumptions justified by experiment [1] is described. The equations of free convection
are analyzed in dimensionless form.

1. Consider an axially symmetric vessel filled with incompressible, viscous liquid, having an initial
temperature T, the thermal flux density q being specified on the surface of the vessel for t > 0. The pro-
cess of free convection is described by the following system of equations [2]:
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Here T is the dimensionless temperature,T, is the temperature of the liquid, A is the thermal conduc-
tivity of the liquid, q,, is the maximum value of the density qy, !, is the characteristic linear dimension, T
is the dimensionless initial temperature of the liquid, T, is the true initial temperature of the liquid, (T)
is the dimensionless volume-average temperature, v is the dimensionless velocity of the liquid, t is the di-
mensionless time, t; is the true time, a is the thermal diffusivity of the liquid, p is the dimensionless pres-
sure, p; is the true pressure, p is the density of the liquid, i is a unit vector directed along the acceleration
of the earth's gravity, G is the Grashof number, v is the kinematic viscosity, 8 is the coefficient of volume
expansion, g is the acceleration of the earth's gravity, P is the Prandtl number, n is the normal to the sur-
face S defining the region Q.

Having written down the equation of thermal balance and integrated this for the initial condition
(Tl = o = Ty, we obtain
¢ V.
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Here V, is the volume of the region occupied by the liquid.

Let us suppose that the following conditions are satisfied:

1) The flow of liquid is laminar, quasi-stationary, and axially symmetrical or plane;

2) the Grashof number is much greater than unity, and the Prandtl number is of the order of unity;
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3) the whole region occupied by the liguid may be divided into a thermal boundary layer § thick, a
dynamic boundary layer, and the core of the liquid;

4) the flow of liquid in the core ig ideal;

5) the temperature of the core equals the volume-average temperature (T);

6) the thickness of the thermal boundary layer equals the thickness of the dynamic boundary layer;
7) the thickness of the thermal boundary layer is constant [1];

8) the thermophysical properties are independent of temperature,

Let us consider the basis of assumptions (1)-(8). Assumption (2) does not seriously restrict the prob-
lem, since for a whole series of liquids (for example, cryogenic liguids such as liquid oxygen, nitrogen,
hydrogen, etc., as well as alcohols and water) the Prandtl number is of order of unity, while the condition
G > 1 corresponds to developed convection. Assumption (6) is a consequence of (2); for P ~ 1 the thermal
and dynamic boundary layers coincide [3]. Assumptions (5), (7), and (partially) (1) correspond to the ex-
perimental results of [1], which indicate that for t ~ 10~? convective flow passes into the quasistationary
mode, and for a large part of the volume the thickness of the thermal boundary layer is constant, while the
temperature of the core of the liquid differs very little from the volume-average value. The theoretical
model thus constitutes a certain idealization of the experimental results,

We seek the temperature field T and the velocity field v in the following form:
= 4+a(n y)  v=V(zny) (1.3)

Substituting (1.3) into (1.1) and (1.2) and using the propositions of boundary-layer theory [3], we
obtain
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Here x4, ¥, i a coordinate system connected to the surface S; the origin of coordinates is the point
of intersection of the symmetry axis with the lower part of the surface of the vessel; R,(x) is the radius of
curvature of the vessel cross section.

The boundary conditions for (1,4)-(1.6) are
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In this we assume that heat passes from the wall of the vessel into the boundary layer, and that heat
and mass transfer then take place from the boundary layer into the core,

Here h is the thickness of the thermal boundary layer, f; is the longitudinal component of the velocity
of the core at the interface with the boundary layer {y = 5),

In order to solve the boundary problem (1.4)-(1.7), we use the integral-relationship method [3]. We
seek the temperature profile in the following form:

T=To4 T —i—‘[’g( ) +1’s< ) —]—n( >4 (1.8)

The coefficients 1y, 7y, T4, T3, 7, are found from the conditions
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Substituting (1.8) into (1.9) we obtain the systems of equations

Tttt Bdn=20 5= 0.5y8%
Ty + 2t + 315 4 dry = 0, 21, + b1y - 127, = y0* (1.10)

Solving (1.10) we obtain

7, = 0.58g, 55 = —gd, 7 = 0.5¢82
Ty 8 (q— 70) T = 0.58 (3 — q) (1.11)

The profile of the longitudinal component u we seek in the form
‘2 3
u= Ao+ h (%—) +A,(—g—-) (1.12)
We find the coefficients Ay, f}, A, from the following conditions:
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Substituting (1,12) into (1.13) and solving the resultant system of equations, we obfain
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After integrating (1.4) and (1.5) and using (1.8) and (1.7), we obtain respectively
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Substituting (1.8), (1.11), (1.14), into (1.15) and integrating the resultant equations with respect to x,
we obtain a system of two algebraical equations for 6 and f.

The dimensionless integrated heat-transfer coefficient N is calculated from

ah 2

Tmb T8
Here « is the integrated heat-transfer coefficient,
Let us consider some particular cases of the foregoing problem.

2. Let us consider free convection in a torus for which a constant thermal flux density is specified
on the surface (Fig. 1). In this case
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The equation for § thus takes the form
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(2.1)
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Here E(z) is an elliptic integral of the first kind and R is the
Rayleigh number.

The value of the longitudinal velocity component of the core at the
interface with the boundary layer is calculated from the formula

Fy
f=7
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A solution of Eq. {2.1) on an electronic computer (M-20), using the
Fig. 1 Muller method [4], for R, = 10%-10!! gave eight complex and four real
roots, of which one was positive and smaller than unity. This root was
taken as the thickness of the thermal boundary layer. An analysis of the results showed than 8 and N were
independent of the Prandtl number. After analysis of the results, we obtained the equations

N = (0.661 -+ 0.03571) (R,)0-1%
- (2.2)
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Here R, = GP.

As defining dimension in Eq. (2.2) we taken the radius of the torus, The maximum error in calcula-
ting Nby Eq. (2.2)is 8%,

3. In the same way as in Section 2 we also considered the problem of free convection in a sphere
having a constant thermal flux density specified on its surface. As a result of calculations analogous to
those just carried out in the range of Rayleigh numbers 107 < R a= 10! we obtained the following equations:

N = 1,044 (Rg)%1%5, § = 1,92 (R,) 018 {3.1)

As defining parameter in (3.1) we take the radius of the sphere. The following are the values of the
longitudinal components of the velocity of the core fat its interface with the boundary layer

GP= 40" 4% 400 fon
fo= 324.5 855,14 2176 13360
The values of the Nusselt number calculated from (3.1) for GP =10% 10! will respectively be N =
57.5, 140; according to experimental data [1] they are respectively N = 54, 123,

This recommends Eq. (3.1) for use in calculating the integrated heat-transfer coefficient for free
convection in 3 sphere over the range of Rayleigh numbers 107 < R, = 10t,

4. In the same way as in 2 we also considered free convection in an infinite horizontal cylinder with
a constant thermal flux density specified on its surface. For R, = 107-101 we analogously obtained the
following equations:

N = 0741 {R,)?193,  § == 2.81 (Ry)~02%8 {4.1)
As defining parameter in Egs. (4.1) we took the radius of the cylinder.

The satisfactory agreement between theory and experiment for one of the cases considered (the
sphere) suggests the general validity of the model employed and recommends the proposed method of calcu-
lation for the range R, = 107-10! when calculating the integrated heat-transfer coefficients and temperature
distribution in the boundary layer for free convection in all axially symmetric vessels.
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